CE 474

Class 35
12 November 2015

Offset Times:

U.S. 95 - Os

White Avenue - 70s
South Blaine Street - 60s
South Mountain View Road - 21s

Quality of Progression:

Up Direction - Fantastic
Down Direction - Average

Bandwidth:

Up Direction - 25s
Down Direction - 28s
(after second intersection)

Goals:

To optimize the progression in the eastbound direction through the system of intersections, each on a 100 second cycle.
To maintain decent progression in the westbound direction, while making the eastbound progression most optimal.

Case 1
Cycle length $=100$ seconds
Platoon Width = 25 seconds

Activity C03: Signal Coordination Plan

Colten Bernauer

Allen Taylor-Stiffarm

- Network optimized for down direction preference to allow traffic flow leaving Moscow to alleviate traffic and congestion in the town.
- In order to compromise Peterson (2 $2^{\text {nd }}$ line) the offset was set to allow some green time for the tail end of the platoon in the upward direction, and allowed more green time in the beginning of the downward direction.
- Bandwidth of 10 seconds in the downward direction is able to be served completely.

Intersection	Distance	Cycle Length	Green (s)	Offset (s)	Platoon Width(s)	Speed (mi/hr)	Speed (ft/s)	Travel Time (s)
Farm			30	49				
	1997					35	51.3	$3 \quad 38.9$
Peterson			30	52				
	1015	60			10	35	51.3	$3 \quad 19.8$
Line			30	49				
	2376					29	42.5	555.9
Jackson			30	54.5				

Time vs. Distance

Quality of progression

- Up = great
- Down = average Bandwidth
- 28 sec

Goal
Our goal was to find the best offsets to provides steady flow throughout one direction.
We accomplished this by optimizing our bandwidth so we had a great up and an average down.

Number of arrivals on green $=6.89$
Number of arrivals $=8.68$
$\mathrm{g} / \mathrm{C}=0.60$
$\mathrm{P}=.83$
$\mathrm{R}_{\mathrm{p}}=1.39$

```
Class 35(11.12)
Build VISSIM network for system
Do: ACO3

\section*{AC04: Base network}
\begin{tabular}{|ll|}
\hline \begin{tabular}{l} 
Class 36 (11.16)
\end{tabular} & Class 37 (11.18) \\
\begin{tabular}{l} 
Split times
\end{tabular} & Continue: AC05 (due 11.19) \\
Critical movement analysis \\
Do: AC05 (due & ACO5: Critical movement analysis \\
\hline
\end{tabular}


AC06: Split analysis
\begin{tabular}{|c|c|c|}
\hline Class 39 (11.30) & Class 40 (12.02) & Class 41 (12.03) \\
\hline Cycle length analysis & Exam \#2 & Offset analysis \\
\hline Do: AC07 (due 12.07) & 8: Cycle and offset analysis & Do: ACo8 (due 12.07) \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline Class 42 (12.07) & Class 43 (12.09) \\
Analyze data and prepare design & Analyze data and prepare design \\
\hline
\end{tabular}
\(\left.\begin{array}{|l|l|}\hline \text { Activity } & \text { Work Tasks } \\
\hline \text { AC02 } & \begin{array}{l}\text { Field work } \\
\text { - Learn about parameters to describe quality of progression }\end{array} \\
\hline \text { AC01 } & \begin{array}{l}\text { Spreadsheet tool } \\
\text { AC03 }\end{array} \\
\hline \text { - Learn about options for coordination }\end{array}\right\}\)\begin{tabular}{ll} 
AC04 & \begin{tabular}{l} 
VISSIM microsimulation model
\end{tabular} \\
AC05 & - Optimize phase splits, cycle length, and offsets \\
AC06 & Predict travel times and delay \\
AC07 & \\
AC08 & \\
\hline
\end{tabular}


Quality of progression
- Up = Good
- Down = Average to poor Bandwidth
- Up = 10 sec
- Down \(=27 \mathrm{sec}\) (partial)

What are your goals?
What can you accomplish?


Quality of progression
- Up = Excellent
- Down = Poor Bandwidth
- Up \(=40\) sec
- Down \(=5 \mathrm{sec}\)

What are your goals? What can you accomplish?```

