CE 474 – Class 22

October 14, 2015

9

Class 21 (10.12) Discuss: A43 results Mini-lecture/CTQ: A45

Class 22 (10.14) Do/Discuss: A47, A48, A49 Homework (due 10.15):

Prepare: A50

Class 23 (10.15) Do/Discuss: A50 (due 10.19)

Do: A50-Revised Homework (due 10.19):

- Read: Chapter 9 overview
- Read: A52
- Do A52 CTQ
- Read chapter 4, K&T

Class 24 (10.19) Mini-lecture/CTQ: A52 Field prep: A55

Class 25 (10.21)

[Field work: no class meeting] Do: A55 (field) (due 10.22) Homework (due 10.22):

Prepare: A54, A56

Class 26 (11.22) Preview: A62 Preview: Exam #1 Discuss: A55 Do/Discuss: A54, A56 (due 10.26) Homework (due 10.26):

- Read: Chapter 10 overview
- Read: A58
- Preview: A59

Is the 85th percentile speed (or speed limit) of opposing traffic greater than 45 mph?		YES	NO
How many through lanes on the opposing approach?			ONE TWO DELAY OR DATA THREE AVAILABLE
Is V _{It} x V _o > 50,000 during the peak hour?			ES NO
Is $V_{lt} \times V_o > 100,000$ during the peak hour?			YES NO
Is left-turn delay equal to: (a) 2.0 vehicle- hours or more, and (b) greater than 35 seconds per vehicle during the peak hour?			YES NO
Has the critical number of protected-permitted- left-turn-related crashes (C_{p+p}) been equaled or exceeded?	Refer to Exhibit 4-17	ES NO	YEE NO YES NO YES NO
Suggested Left-Turn Phasing	PROTECTED PROTECTED PROTECTED	PROT-PERM PERMITTED	PROT-PERM PROT-PERM PROT-PERM PROT-PERM PROT-PERM PROT-PERM PROT-PERM

Protected leading LT Protected lagging LT

Time Red Green

Permitted LT

Protected leading LT

Learning Outcomes

- Be able to compare the performance of different left turn phasing alternatives.
- Understand the efficiency of different left turn phasing alternatives.
- Be able to determine an efficient left turn treatment.

Deliverable...

• Complete A47, A48, A49

 One Word document with all results to BBLearn by 800 am Thursday

—— 800 veh/hr/lane

100 veh/hr

100 veh/hr — — 12

Considering the Questions

- How does the opposing volume affect the quality of the left turn permitted operation for each of the two cases?
- What change to the phasing plan would you consider, if any, to improve the quality of the operation for case 2?

 How does the opposing volume affect the quality of the left turn permitted operation for each of the two cases?

• Table 1 Average delay for each movement.

	Average delay (sec/veh)			
Movements	Low opposing TH volumes (800 vph)	High opposing TH volumes (1450 vph)		
EBTH	9.4	12.3		
WBTH	9.0	13.4		
SBTH	19.4	19.1		
NBTH	18.0	20.2		
WBLT	19.0	72.6		
EBLT	15.7	172.6		
Intersection	13.3	18.0		

 What change to the phasing plan would you consider, if any, to improve the quality of the operation for case 2?

Comparing Permitted And Protected Left Turn Phasing

- Learning outcomes
- Overview
- Questions to consider
- Steps

Running the Experiment

- Step 1. Open the movie file.
- Step2. Observe the operation of the two cases.

Considering the Questions

 How does changing from permitted to protected left turn phasing affect the LT operation and the operation of the entire intersection?

 How does changing from permitted to protected left turn phasing affect the LT operation and the operation of the entire intersection?

• Table 2 Average delay for each movement.

Movements	Average delay (sec)		
	Permitted LT	Protected LT	
EBTH	12.3	19.7	
WBTH	13.4	24.4	
SBTH	19.1	27.1	
NBTH	20.2	29.0	
WBLT	72.6	54.5	
EBLT	172.6	46.3	
Intersection	18.0	24.7	

Comparing Protected/Permitted And Protected Left Turn Phasing

- Learning outcomes
- Overview
- Questions to consider
- Steps

Running the Experiment

- Step 1. Open the movie file.
- Step2. Observe the operation of both simulations.

Considering the Questions

 Why do the EBLT and WBLT movements have lower delay when they are operating as protected/permitted phasing as compared to the protected left turn case?

 Why do the EBLT and WBLT movements have lower delay when they are operating as protected/permitted phasing as compared to the protected left turn case?

• Table 3 Average delay for each movement.

	Average delay (sec/veh)		
Movements	Protected LT	Protected/Permitted LT	
EBTH	24.9	25.2	
WB TH	27.0	24.5	
SBTH	31.9	31.2	
NBTH	30.4	28.6	
WBLT	56.0	32.4	
EBLT	52.5	38.9	
Intersection	29.3	26.9	

• Table 4 Average green duration for each phase.

Phase	Average Green Duration (sec)		
	Protected LT	Protected/Permitted LT	
EBTH	44.3	45.7	
WB TH	44.2	44.7	
SBTH	28.7	30.1	
NBTH	28.7	30.1	
WBLT	10.4	7.7	
EBLT	10.6	8.9	

Closure: Summary Of Key Points Learned

- Be able to compare performance of different left turn phasing alternatives.
- Be able to describe efficiency of different left turn phasing alternatives.
- Be able to determine efficient left turn treatment.