CE 474 - Class 10

September 16, 2015

For next time

- Do A22 (individual); show work in book and bring to class tomorrow.
- Prepare for A23 by reading activity and listing questions that you have for it; this will be primary activity during lab tomorrow.

Transportation in the News

- Continuous flow intersection

Notes

- Vehicle trajectories and detector status
- Phase terminates when min green and passage timers have both expired
- Phase gaps out when passage timer expires

ASC/3 Display and Detector Status

Ey ASC/3 CONTROLLER 12.46.00 ASC/3 2100

STATUS [FREE-DEFAULT 104/25/12|14:37:33 PHASE 1234567890123456 PH STAT . G . . . G $-\cdots \cdots$ VEH CALL
PED CALL
R1/PH 2|R2/PH 6|R3/PH . IR4/PH GRN REST |GRN REST IINACTIVE |INACTIVE
 LC: 0s/ 0|SYS CYL: 0siCOS I FREE FUNCTION 12334567890123456
 LP FLAG
COMMUNICATIONS PORT STATUS|TLM ADD: Ø ETH RX TXIP2 RX TXIP3A RX TXIP3B RX TX

Download file

Qonstant calls placed on phases $2,4,6$, and 8

ASC/3 CONTROLLER 12.46 .00 ASC/3 2100

Preempt

Inhibit Max

Max 2
Max 2
Max 3
-

V TSP Test \ulcorner Tubo
\ulcorner Automatic Flash
Γ External Start
Save DB

Database number to
load on next start:
Controller Type C ASC/3 2100 ASC/3 1000 C 20702 A Fault Monitor (FM) C 20702 B ASC/3 RM Voltage Monitor (CVM)

Γ Lock $\sqrt{\checkmark}$ Momentary

STATUS [FREE-DEFAULT 104/25/12|14:38:39
PHASE 1234567890123456 PH STAT . . . G . . . G - VEH CALL . C . C . C . C
PED CALL

R1/PH 4|R2/PH 8|R3/PH . |R4/PH MGRN1 4 |MGRN1 4 IINACTIVE \mid INACTIVE $\begin{array}{llll}\text { MAX1 } & 34 \text { IMAX1 } & 34 \text { I }\end{array}$ PLAN SPLT: 0|TP: 1|SEQ: 1;ACT: $0 \mid D P: 1$ LC: 0s/ 0|SYS CYL: 0siCOS | FREE FUNCTION 12 | | 3 | 5 | 7 | 9 | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 LP FLAG
COMMUNICATIONS PORT STATUS!TLM ADD: 0 ETH RX TXIP2 RX TXIP3A RX TXIP3B RX TX
 R3

MMI SMI ND NS

1	$\frac{2}{2}$	3
4	5	6
7	8	9
SF	0	C

Part 2: 0:55-2:30
Example detector calls and controller/display responses

Part 3: 2:40-5:00 \longleftarrow Testing your skills

1. What are examples of the data provided in the controller status display screen?
2. How many rings can be accommodated by the ASC/3 controller?
3. How do you know whether a gap out or max out has occurred?
4. How can you verify that a vehicle call has been placed?
5. Describe some of the observations that you have made on the response of the controller timing processes to vehicle calls.

Critical Thinking Question

1. Why does phase terminate for each scenario?

Doing the Activity

- Step 1. Open movie file
- Step 2. Observe status at beginning of Phase 4 green
- Step 3. Observe two scenarios for one green indication
- Step 4. Summarize your observations

- Why does phase terminate for each scenario?

- Why does phase terminate for each scenario?

Nad SM ND NS

HI Slowal Nel

- Why does phase terminate for each scenario?

- Why does phase terminate for each scenario?

Task 1

Complete the detector responses, timer responses, and signal display responses for each of the eight cases that follow. The conditions for each case are shown in the lower right of each figure. Assume that the green time begins at $t=3$ and that yellow time $=3$ seconds and red clearance time $=1$ second.

$\mathbf{t}=\mathbf{0}$

For next time...

Class 10 (9.16)
Review: A18
Do/Discuss: A19
Do/Discuss: A20
Do/Discuss: A21
Homework (due 9.17):

- Do: A22 (in book)
- Prepare: A23

